A NEW TERTIARY FORMATION AND FAUNA FROM THE TIRARI DESERT, SOUTH AUSTRALIA

(A Contribntion from the Musenm of Paleontologr, Thiversity of Califorma, Berkeley)

By R. A. STTRTON', R. H. 'TRDFORD', anv M. O. WOODRERNE'
ABSTRACT
This report describes a now continental formation and vertebrate limna from the east shome of Lake Nopakalidi, a salt pan in the central 'Tibari besert lying between the Birdsville stock ronte and the rastern shordine of Lake Fyre in Gouth Australia. The formation is a stream chames of livable, poorly sorted, poble conglomerates, and shates cont into fohded alaystones of the mid-Tertiary Etadmma Formation.

The mammals are mostly woodland kinds, inchuline koala-like, and ringtal and brushotail possum-like arhoreal forms. A dasyurd, two bandicoots, a wombat, two rat kabgaroos, a protemmodont macropodid, and a diprotodontid are also present. Most of the fossils are isolated torth but there are several well preserved mandibles and momerons foot bones. Four isolated freth questionably referred to the Monotremita are described. A new genus of wombat and a new gemus of koblat are proposed.

Other lossils inchade fish, cheloniths, crorodile teeth, a lizard jaw and foot bomes of a lare emulike bird. Associated with the vatebrate fossils are impressions of Eatolyphes leanes and evidence of other plants.

The are of the formation and forsils is tentatively dated as Ninerne.

INTRODCCTTON

 fommations and vertehate famat have heen recognized by the south Anstamban Masemm- Liniversity ol' ('allimma Experlitions in the 'Tirari Desser of the lake bye region in Sonth Anshatia. A preliminary requit on this sefucure was presented by Stirton, Tedford and Miller

 bratr fammathe with dentatively dated as late Oligocene. Following

[^0]deposilim, the Rtaduman and molerlying Masozole formations were

 ronterast of laka Heter.
 the depositional regine within the basis with the result that sherean

 formational mila, the Mampmworla Sands, the 'Tisari Fomation, and

 exploration on the 1962 expertition. 'These deposits. horein describer

 F'omation. ('allertion of the leal imporessions was himened by the finet that the demp shales embled poon drying. There also were
 and hetwem the lamina whon expmad to the sun and air, We wrope

 dated Probruary 19, 1960:

[^1] Hhe has of their folinge alome, it may be profitalide 10 sall attention to the resemblame of
 f. Margimuta Smith, F. longifolin Liuk, or E. Mrepingua Deane \& Minden."

F゚C. 1
 Negraikaldi, Puntawolona and Palamkarimat.

Beginming about 1,200 feet moth of Locality V5858 611 the east. shore of Lake Ngapakaldi (fig. 1), ferruginous conglomerates, sandstones and dark grey claystones arop ont in an area aloot 50 feet wide and 900 leet lone which follows the northeast trend of the shoreline of the lake (fig. 2). It the south end of the ontcrop, the deposits are lost in the grpsiferous silts of the salt pan: to the north they are covered bey Quaternary or Recent sand dmes. The Wipajiri Formation

FTG. 2
(Above.) Plan yiew of past shom of Take Ngapakaldi between fossil sites V-5858 :and V.6218.
 view, showing northward dip of Etatumat Formation. Wipajiri Formation is chammedna into the Etadumas al $\mathrm{V}^{2} 6213$.
occurs in a noth-easterty trending stream chamel which is cut down into the claystones of the Etadnma Formation. Although the relations hetwern the two formations appear disconformable, a slight angular meonformity is indicated by low angle tilting of the Etadmna Formation (strike N. $30^{\circ} \mathrm{E}$., dip $2^{\circ} \mathrm{N}^{\circ} \mathrm{W}$). There is, however, no evidence for or against the Wipajiri heing involved in the tilting, because of the limited extent of the exposure and the nature of the contact between the formations.

Block diagram showing Wipajiri Formation chammelled into the Etaduma. Small intex
drawing shows Jocation of measured sections 3,4 and 5 from which the block diagram was
construeted.

The Wipajiri Formation can be subdivided into a basal coarse clastic portion overlain by fincly laminated leat-bearing shales (fig. 12, B). The coarse clastics (units 3 and 5 of measured section 5 in Appendix) contain the vertebrate remains, while the upper shales contain impressions of Eucalyptus leaves. The type locality of the formation is at U(MIP Locality V6213 (fig. 12, A), 1,835 feet $\ldots 1^{\circ} \mathrm{E}$. of Locality V5858 (fig. 2). The outline of the main quarry at V6213 as well as the positions of other pits and measured sections is shown in fig. 4.

FIG. 4
Diagram showing location of pits. measured sections and outline of main quarry at V-6213.

The loner part of the Wipajiri Formation is composed of a latial anglomerato sequence（see measured section 5 ，Appendix A）．The hasal conglommate is ronsiderably roarser and mome hotorogoneons than the proble conglonerate abd apparently represents a more yonthind stame of arosion with greater competence and velocity of the stream．The litst two mits are limited to the remtrat part of the （ehammel（sere the block diatoram，fig．：3）and are tomoted by the pebble

 portion of the tommation hare alsw sieded weeasiomal whtle and fish remains in association with lonses of white samd．

Fondmatela，the examation represented by seetion 4 （fig．f）is nearly propendianda to that of sertion so that the configuration of the chamel maty be dealily seren（fig．B）．The trace of the deopest

 Whe lake．Figure 2 shows the norfhward element of the north－westerly
 B show that the Wipajiri is ehmmeded into the light grey and dark Erey daystomes ol the Etaluman Formation．The dip of the Eiadumat aceomets for the faet that the Wipaijer Formation doos not extend

 phase of Husiatide doposition in the Tirari Desert．This deposite is composed of relatively dean white samels，light grey lenticulat day－ stomes，along with framents of limestone dovived from the Etadmmat Formation and shows the following difformes when eompared with the Wipadiai Fommation：

Mampuworia Sindsa
 ［Jatkis l＇alankarinnt］

 limmonita stabll．

以及小川．

[^2]
Wip：jivi FMrmation

［1．ikn Smpaiknllif］

 ley lintomiln sthin．

 －

4．（＇rokslumbliner mut bvilent．
5．No ayprann liviti at latsial rounl：url．

The "dirtier", penerally coarser, more hotarogenems character "hl the Wipajiri Formation in eomtrast fo the Mamponerdn samd may be explained be a diftorenes in sombe. The Wipajiri may also represent, at loast in its initial deposifo, a time of ereater stream velocity and
 elevation of the sonere ate associated with reximal mplift. "Rogional
 sediments of the betadmat the the conser flaviatike deposits of ble
 Tla contrast befween the Rtaduma and Wipajin Fownations afforde the same inkerence. Also, here Etalmma is tilted at both takes
 Fonmer. "At Lake Pakakarima the Etaduma Formation was Fohled

 dinal axis immedimely to the sombenst hecense the formations over
 frasments ferived from a durierustad terrain" (Stioten, Tedford and
 dinal axis alse may have served the the somere for the Wipajiri Fomation, in which ase the terman between the sombere and site of

 cateareons mudstone chasts fomm in the hasal unit of tho Wipajime.

 †1111.0|以

Abstract

The only bocal outcrop known to us in whish similat iron-rich pocks are foum onems tre Terrughous motted fine genmed quartz samblones coutaining pateles which wee highly forruginized. This onterops seoms to hee a part of the irregular surface upon which the Etndanna Fommation was deposited. Both Etadunas grem daystones and foviatile ande effered to the Katipiri Sames oceur in the mutrop at Lake Puntamolona south of the Rerpuginizod renmant, but their relation to the lader is ohscured by drift sand. Othop such bemmonts may oecul in the veinity of the Wipngiri type section, mens lmoriod umber later deposits or exposed in sall pans not yet rigited.

The irrugular, suhangular chert elasts runge in sizu from less than an inch to several mehes in tomgest dimonsion. They ull hare a comppicucmaly fibrous uppearamee which was it that mistakun for the texture of fersil sood. When broken, they arn yedlow brown, grey or blueblach amd marly completely replaced by silica, atthough they often show the remenat may be a promary vilica doposif, as a siliceoms sprigg doposit, or replacement of limestone Thote is 10 e resumblaned to the known chare notules in the Efadmma dolomilie limestome nor do these siliceous rocks show any traen of momanm catcareous materinl.

Most of the lithostratigraphic evidence merely indicates that the lower limit to the age of the Wipajiri Formation is post-Eitadurna, as is that of the Mampuwordu sands. Since outcrops of the Mampuworda sunds ocel1r some 35 miles south of those of the Wipajiri, the relative ages of these formations cannot be determined by physical stratigraphy, At Lake Palankarinna, the Mampuworda Sands are overlain by the horizontal red argillaceous sandstones and arenaceons claystones of the Tirari Formation. These horizontal deposits also occur at Take Nesapakaldi but, unfortunately, not in conjunction with the Wipajtiri Formation. They are exposed near the top of the bluffs on the western side of Take Ngapakakli where they appear to directly overlie the Eladunna Formation (Stirton, Tedford and Miller, 1961, 1. 57 ; note, the words "covered interval" shonld appear hetwoen umits 3 and 4 of this section). The Wipujiri is covered only by Quaternary or subhecont sand dunes so that its upper limit is not closely doterminable by stratigraphio means. The geologic evidence indicates a postEtaduma age for the Wipajiri Formation. Preliminary studios on the elements of the Kirt, jamarpu fanna corroborate this conclusion and further suggest that the Wipajiri is much older than the Mampuwordn Sands.

KUTJAMARPU FAUNA

The type locality of the Kuljamarpu lamna is LCOMP Locality V6213, 1,835 reet N. 1 E. of UCMP Locality V5858 on the east shore of Lake Ngapakaldi, Sonth Anstralia (fig. 1 and 2). The vertebrate fossils occur in the basal clastic portion of the Wipajiri Formation (units. 3 and 5 of section 5; Appendix) where they are found as disarticulated skeletal elements. Spines of teleost fish are by far the most aboudant, but mammal bones, jaws and teeth are common. The jumbled, disartionlated nature of the fossil remains is consistent with the stream-chamel waracter of the deposil. In view of the relatively
high competence and relocity of the strean sngested by the size range and angularity of the clastic particles, the unabraded nature of the lossil remains indicates that thry were derived from the immediately surromelng area rather than being bromght in from far away. The

FIG. 5
Drawing of Eucolyptus loat improssion from the upper dark shate portion of the Wijajiri Formation at V-6213. One-half naturat sike.
leaf-bearing shates produced a lew complete tortle carapaces and plastra and fish skeletons, and a partially fompleto lower leg and font of an emu-like eromud bird. These drposits contaned the only associated skeletal elements.

The following pretiminary lamal list will give all idea of the content of the Katjamarpar fana. Becanse of the preliminary natire of the present study, only a possible monotreme, a now wombat and a new koala will be deserihed now. The dipmotodontid, Neobiolos firaremsis, has been deseribed by ome of 11 in another publication (Stirton, 1967b). The following Kntjamarpu vortehrates will be described at a later date:-C'Tenstei, parts of skeletons with bones in phace, spines; Dipnoi, teeth; Chelonia, three carapaces, plastrons and foot bones; Squmata, mandible: ('rocodilia, part of ramium, teeth, vertehrae, dermal scotes: (asmriformes, part of pelvis, leg and foot bonos: Dasynridat, right mandible; Permolidae, upper and lower molars, and parts of mamdibles: Phalangerinate (trichosmime and psequdocheirines, upper molars and mandilles: Potoroinae, maxilla, upper molars, mandibles, incisors, upper molars, lower molars, foot bones.

Class MAMMALIA

Subclass Prototheria

We have followed the praction of Simpson (1945, 1959, 1960) in retaining the Prototheria in the Class Mammatia. We agree, however, with the principle arlvocated by Huxley (1958) that any given category of chassifeation should include the form, if known, which is ancestral
to the other taxa of that category. We thas brbere that classifications should be lommated in the redtical, or clade, sense in so far as is possible.

Often, howeror, fossils are so poorly represented or preserved that the generic, familial or evan inframdinal ancestor of a particular category cannot be determined. This is cortanly trone of the mammatJike gromps of the Nesoroic. There is promise that the ancestral relationships of most of these groups will he clarified with future discoreries. Evidence from new discoveries, especially from the Rhacto-Liassie, when infequate, supports the conclusion that most of the Mesozoie orders as well as the monotremes arose from different groups of mammal-like reptiles.

If the class Mammalia is to be restricted in scope we farour inmbling therein the Theria and their Rhaeto-Liassic ancestors. In the meantime it is preferable to maintain the watus yuo.

Order :Monotremata

Family Ektopodontidae, new family
Fomily dingmosis: That for gemms until other genera or species are foumd.

F1G. is
 views of SAM $11384 \overrightarrow{7}$, left upper molar. Four times natur:t sizi. Note appression facette at ponturior hase of erown. Arrow indieatws anturion tip of tooth.

Ektopodon ${ }^{1 i}$ Stirton, Tedford and Woodburne, new genus (Figs. 6, 7)
Genotypir specias: Ektopordon serrutus Stirton, Tedtord and Woodhome, n. sp.

FIG.

 Srown intiontes anterior surface of tooth.

Generic diagnosis: Mammals with triamernas mpper and subghadrato lower toeth of lophodont romstruction. Lophs (ids) divided into numbroms ensps (ids). Basic constraction of upper and lower teeth noury identical. I arreest cusp of mpere teetle on lingual side of each toph, largest euspid af lower teeth om labial wide of each lophid. laphs (ids) strongly neparated by namow, drepl, transorsp valley Lahbal and lingoal ocelusal outline comstrided at transwerse vallay. Roots ol lower molats restricted to primary (labial) side of lophids. fipore mondre with a lahial and lingat pair of roots with a possible additional root mader the anterion Goph. Limsabl pair of roots temed to bo fased into a single strueture.

Fiktopodon serratus ${ }^{7}$ Stirton, Tedford and Woodburne, n. sp.
Molot!!pe: Soutl Anstralian Museun, P13847; left upper molar.
 moderatel? Woral left lowar molar: 「('MP G7176, well worn right hower molint.

 shom of lakr Nompakaddi, South Australia.
 measmed suedion 5 (Appendix)

 bedow. Whether or mot this orientatiom untmately proves to be corrod, it at least surves to labilitate the present deseriphon. 'fla temetlo of the tooth, as medsumed perpendiendar to tho flat posterion
 perpendicalar to the lometh. The tips of all roots wom oither ahraded aw:y or broken off.
 with the aper of the trianete dimeded anterionly (fick (ia). A hat,

[^3] foolh SAM l't:847 atually represents, the enamel-covered crown consists of there perallel transurerse kopls. The crown is supported by a labial amd lingmal pair of roots whose bease construction parallels What of the middle and posterior lophes.

The transersse width af the anterion loph is 3.5. It has lome
 heing the largest. The lingual-most ensp stopes laterally agatnst the
 "rest of the loph by a wide groove: postoriorly the eroope is math Harrower. 'The lwo latial cosps atere smallor and moto chasoly

'The second loph is 180 wide and is composed of bine ensps.
 "on weh loph is lomme at the lingual tip of the lophe In oechasal
 'Ihe rasps of' tho midelle and pustarior lophs are elongate materoposiarionly, have a blant, romaled apex, and shant labially from hase 10 lif\% The cosps diminish in si\% labially atong abel, loph to such an oxtent that the last fwo are dificull to separate. The antorion and posterion sides of the cospos stope fowad the hase of the loph at an
 fransverse growe which separates oach loph. The athterior and postorion sumberes of the ensps in the first two lophs slop at about the same angle. In the posterior foph, the posterion side of the omsps is steeper than the anterior. A groove which stants laterally foward the apex is cut into the anterior and posterion sides of most of the "osps. These mrooves separate an miferior and posterior pair of rootlike ridese on the hasal part of eath map. The grooves terminate just above the botfom of the transverse valley. The anterior faces of the three small maspe at the labial end of the middle loph are mited into a smooth surface whieh is directed anterolimenally. The last fwo lahial (asps of the posterior loph also lack grooves, but the commissure between the consps is still visible. A lat, clongate, strath-shapred fiscette is developed on the posterion surface of the last loph (fies bes). 'This is similar to facottes on the anterion surface of the lower teeth
 between adjacent teeth.

SAM Ploget has a pair of labial and lingral roots (fig' Gd). The lingnal pair skat lingually away from the tooth and are joined thonghont their length hy an imtoroposterior septom. The root-mass thus
formed fapers distally and is remmiserent of the wingle intermal root (ommonoly formal in the apper teath of mammals. The labial ront
 matorion labial root is orionted amberolingally toward the anterion tip of the tooth, but also semblis of thin tomsierse septum toward the hase of the anterior linsual root. Most of the root betow the amterior boph is boken away. I'he comburation of the rematning portion mberests that the anterion loph was supported by a simgle root whose bane was rommeeted to the labial root moder the middle loph. The posterion labial rool is oriented transversely and is romposed of a lahial and lingoal pontion. 'These two parts are mainly swellings in the haste mot-mass and are broadly comnected ly a slightly fhimney t.ranserese segment of bones. The root structure thas formed undertios the labiat two-thides of the hase of the posterion loph.

Soner motars: 'The lower molariform toeth are basially like the type sperimen with the exeeption that they have only two transerse
 lophe of the "pper molar, the noaty itenticat conformation of the
 illostrated in fig. 7 . These two feseth ate comsidened to be lolt last
 and becetuse the ereatest developmene of the roots oremes on the lahtal
 the labial sille.
 to the fat antorior fince. The soratest transverse width was moasmed perpendionk to the lensth. T'los height of the roots was taken as the
 'The messmoments for tho varoms lower teeth are as follows.

 this tooth are appoximate beceates of its extreme stage of wear amd atsight amomat of displacement along a prak developed in the tratusrevie valles. Langth is $\overline{5 .} \mathrm{K}$, widtl is 8.0; height of anterion pool is 7.t, puntruiom rome is $7 . \%$.

In wach tooth there are cient maphids in the anterion lophin and six or seven in the posterior. W (WH 67176, a right last lower motar,
 of the dental pattin'l bemains, low arore, to indisate that this tooth hat

 is from the opposite side of the jaw has already been pointed sut.

In UCDMP (ī173, the grooves on the posterion fire of the cuspids on the last lophit extend farthre toware the appers than in the upper molar. On the anterior lophid of the lower molars, these grooves ste mash less developed than in the mppor. 'The anterior and posteriot sides of the ("uspids slope towatd the hase at an emgle of about $4 \mathrm{~s}^{\prime}$. Alfhough UCDP 67174 is in a hater stage of wear, the configutaton
 Toth of these teoth show heaviest weal on the side which we have oriented as labial. This is also the side of the tooth on which the haviest development of the roots orcurs.

In labial view, tho main axper of the two roots are essentially parathel, althomg they curve slighty anterionty (fig. 7f). In anterior view (fig. 7 b, e) it san be suen that the tip of the anterion root is almost. diverly mader the labial edge of the tooth whateas the greater lingnal
 position. Therer serans to be no signitieant difteremere in the sizes of the two roots.

Ther hasie phan of the lower tepth is a pare of transuerare lophits which have hern subtivided loy a number of enspids. The orientalion of the roots which suppont the lophids is also transverse (fig. 7 e). Like the mpere tooth, the lower molars of Elatopodon are transversely lophodont, athongh the eoaleseed lingual pair of roots in the uprese molars max indicate that such lophorlonty developed from a hasiably trimumbar tooth.

Affinties: The structure of the teeth ol Etoporlon is not paralleled in any rodent known to us. The geologie and paleozon geoneaphie setting of the Austratian coutinent indicates, therefore, that the ancestors of this masmal amimal shonld be sombtit amomer the Monotremata, Marsupialia, primitive Placentalia, or even earlier gromps. Based on the present stady and those of Buther (193!)), Grecon (1937), Patterson (1956) and Simpson (1928, 1929a and b) the confermation of the molats amd roots of varions therian and nontherian eroups may he summarizul ds follows:-

[^4]

 (sknoll iatly s:
 ly : transioss rallag,

 supqueteal by is transurbes robl.

 dirently under the semon; lown rentrampal sizat.

Pridrbontids, trimomonts and moltitnberentates possess dentitions with low-rowned non-tribosphenic teeth in whish the cusps are artanged in lometutimat rows. The upper and lower tenth of these forms are of basically simila construstion, 'The fact that trityodontids lowse heme massad as reptiles (Romer, 1956) momasizes the wemeral ximilarity of the dentition of ammals wear the reptile-binammal fransifion, Athough apmening later in time Han the othors, the
 rooted condition wit the mper and lower molars lound in thes frimonodonts persisted into the symmetrodonts, although there is a possihility that tha latter tended for dovelop threerooted mper leeth in the ("rotameans (l'atlersum, 1!55(i, p. 11).

I'loe symmetrodonts, contempmeneons with the tritybolontids and friomodonts, deprated from the hasie dental pattern hy developing teoth in which the cusps hat at triangular arientation. Their upper dad lower molats were, howeror, still hasically smimb.

At first glance, the docedont dentition suems to represent a rather ratheal depatero l'om the primitive mammalian type. A strongly
 hy the dopolnpment of transverse erests in the inolars, one in the "मpers, two in Hw lowers. I'pon doser inspection (sere Simpsom,

1929a, Ms. XVIIT-XX) it is apparont, lowever, that docodont molars comsist basically of two lomgithdinal row of conses with secondary eross-erests. 'The erosiserests descend from cad side toward a median Iomgitudimal valley; lophodonty is at best incipient. It is also apparent that the hasie constometion of the upper and lower molats is similar. 'The adelition of a merlian longitudinal emargination in the anterior and posterion end of the doentont lower molate would produce a contigntation essentially like that of the upper. The development of theree ronts in the upper molass is a persible atwance over the eondition in triconodonts and symmelrodonts, and the inciphent transverse lophorlonty is uniguo among Mesozoic mammals.

The Pantotheria, Nelatheria and Hutheria seem to be too advanesed to be considered for the ancestry of Ektopodon. The Mesozoie and
 molars which do not even remotely resamble those ol' Elitoponon. It is troe that somo massmpials and placentals have developed trams. versely lophodont dentitions, but nol ones in which the upper ferth are as similar in delail to the lowers or in when tho anterion loph is so notaly idential to the postoriors.
 Hecestors of Ekfopodom is that they are not presently known. 'Thee
 Whlopodon represents a prothorian lincoge. Although no reptilo has heren known to develop terall like these, the possibility of basal relationships with the mammat-like raplikes amot bo defintely excluded on present evidence. 'Ithe development of theresooted upper molars and the incipient transparse lophomenty foume in the Dorodonta form a basis for interesting sperentations, lout the lome interend of time involved dictates that these pemain mere sperentations.
 of these animals, so elcarly marmmalian in some rospects and so obviously reptilian in others, las long bean a taxomomie problem.
 lack of dontition. 'The transions molars of (ornithorhymders have beren mosi recently discossed by Simpson (19230) and (ireen (1937). From fighres athe doseriptions in these two works it is elear that Ormithorhymohms teoth comsist of an abterior and posterion mototy separatod by a transeverse valley. In the uppere leeth there is a labial

 forth。

Simpson (ibid., 1. 7) omsidered that the teoth were basically compored of two tramserse hatves, dell with a primary lingnal mpper athd lower habial emsp, and that the momerons aceostory euspe had no
 He towth. After reviowing varions possibilitios simpson (ibid. p. 14)
 derivable foom any known mammalian type, that the omy even fremotely possible exerption to this misht lie the triconodonts. A

 It is intoresting to moto that a sutheorent momber of Jongitndinal and
 stmataral hasis for the terth of loth Elituponom and Ormithorh!mehus.
 dentition in whith tho hargest (ons) is locatod on the lingral side of

 There is atso a rabdom poobilembon of secomdary routs due to the degenspate mature of the teeth. Thar abodition ol "the lower ronte in Eflopudom, in which the lions is restricted of the labita or primary side of the tooth, may bo atributed to the possibility that the demtition of this amimal was hecoming dexemerate. The nearly random poolifersfion wi arpules in the teeth of ormithomynchme may molicate that the foeth hatl degencrated liom a dentition in which enspules ware pesent, bot in a mone pegulated configuration. Subla a configuration eould have rosemblaf the transionse protiteration of ensponles werem in Eilitopordon.

In summatry, the molaniformi teeth of looth Ektopodon and Orwithorhymehms have a simple, bilophates strmeture which is mot elosely approtebod in amy other wroup ol mammals. The treth of Ehtopodem represent it stmotaral paltern from which the dememerate dentition of Ormithorhynotus conld be derived. In view of the rather limited data now availahme it is posisihe that Elitopodon and Ornithorhymolhes are members of separate, collatemal, lineages and are not related orthoseneticalls. If Elitopoden is at monotreme it is the first Teveraty recom of the order and points to the lome expected bont monecomed diversity of the eroup. The level of structaral drvelopment of the denlition in Elitopodon and Ormithorhymahus is reminiseent of that found in the borodonta and suggests that the Monotremata originated from won-therian mathou than therian mammals.

Subclass Theria

Infraclass Metatheria

Order Marsupialia
 Phascolarctidae

Litokoala ${ }^{\text { }}$ Stirton, Tedford and Woodburne, n. gen.
(Fig. 8)
Genotypic species: Litokoala kutjamarpensis n. sp.
Generic diagnosis: M^{1} : smaller and labial ontline more convex than in Phasmotarctos, length and width 5.7 ; space between metacone and hypocone greater than between paracone and protocone; small anferolingual and posterolingual crests ascending from apices of

2 mm .
FTC. 8
 finuma. - Ipproximately two-thisds naturan size.

[^5]
 foward framserse valley whero it fades ont in fosterior part of wide

 of paracono to labial cingulum; ereseentia metaconule present: entumel surlaces moderately eromblate betwren anterior spons of metacomate. and on posterion hase of patamone: plemhere in lompitmanal amb

Litokoala kutjamarpensis" Stirton, Tedford and Woodburne, п. sp.

 mular in ratly stage of wear. We lave identified this tooth as Il^{\prime} un the basis of the following leatures which are similar to that footh
 contimons with protoloph lingually, widely separating paracone from anlorion alge of tontlo metacome slighty higher than paracone, and

 protocome which forms small pocket in that ameat

 cast shome nf Take Neapakaldi, Somfle Anstralia.

[^6]throughout the tooth row in Phassolarshos, and probahly Perikuald. The triangulat labial strfaces of the patacone and metacome in l'1384'r stopee ex ently to the apices of the cusps.

 eresto asemding from the apiex of the paracone and the metacome. In Phascolaralos only the posterolimgat arest of the paracone is

The pattern of attrition or the motars is apparently the sathe in both Lirokoula and Phescolaretos in that the anterion and posterion

 mose of the sheming is done by the posterion arests of those selenes.

 shonimg labial surface opposito tha paraterne is batrower and more
 forthemore the hase of the paracomal surface is crossed hy as ringolnm, whereas that of the metanome is mobstructed. Phoscolarolos dilfers in having a ringulum aroros the base of each of these surfaes
 conal strlace is incomplete berause a wrone passes from the midule of the surface to the base of the tooth. Thas metacemal smblace of those eremera also difers in that a mest asemeds posterodorsally form mesotyte II so that the sumbere is motsimeded only at its posterolabial *orntor"。
 larebos and eat he seen best hy their triangelar outline from the labial side. The parastyle, as in I'luscolarelose is far back from the amterobabial comore ol the tonth and is comaceted to the pabiomme hy the anterior wing of the paraselene. In XI^{1} of both Psemplocheornes and Sohomobales the parastyo is at the extreme anterolabial romop of tho footh and is separated from the hase of the pararone by a deep) rlaft.

In Lilohouln, the stylar "msp decrease stightly hot pogressively from the parastyle to the metastyle, whereas in Phascolarados the hoight of the styles on II^{\prime} in descending order atre mosostype II, mosostyle l, parastyle and metastyle.
'lle protoconule is separated from the protoloph in Litokonla and ocours at the anterolingual batio of the paracone. The postraion spur of the protocomule is directed postarolingually townd the fratusverse valley where it lades out in the posterior part of the wide
lomqitndibal valley betweon the paracome amd metarone In
 and is commeded to the prosterntingual hase of the patamone. Pheseolatalos also diffors liom the Katjaman'pu tooth in having a short
 I low erest is continoms form tho anterotabial corner of the protocomble along the antorion hase of the paracones to the dabial eingulum. This stomelure is not seren in the koalas we have for eomparison. In

 extension of' the peotoloh which eombinnes on to the parastyle. 'Phe

 axtonds posterionly from the protolople in the limenal side of the tongiluthal valley.
 very fow areserntie erest medial to the lingual base of the motacome. Hs postorion spme extends hatek into the valley hotween the modacone
 prosent in l^{\prime} mascolarolos on in the lt^{2} ol Paribould. Anteriorly the metacomule in the Kint jamarporspemen divides into fwo apmes. Ono wemets antarolabially into the transorese valley between the motacome
 lospmbatherms. The wher spur is diveded anternhmently and is sepabated from tha junction of the metalophe cerest of fite protocome

 comule with the amterolabial orest of the hyporone. 'The emamel sumbere botwern the anterior spurs of the metacomen on the hatial surface of the function and on the postepion hasal starlace of the patacome is

 Phascolareles amb Perifonder in which the lompitudinsal valley is feeply ramilate.

The protorone and the hyporme atre mach more widely monded
 consexplontly the anterion and postorion wings of those setones do not
 shatredre is lue emmedion of the motatoph erest of the protoenome amd the materolahial erose of the hyporome. This choses the trantserse batley area lingrably well in from the inner seme of the tronth, In

Schoinobates and Psewthocheims the posterior of these crests bypasses the anterolabial erest of the hypocone. A rather bulbous ensplike structure occurs at the anterolingual base of the hyporome. It comects across to the base of the protocone forming a pocket between it and the crest formed by the junction of the metaloph cerest of the protocone and the anterolabial erest of the hyoocone. 'The cusplike structure is subdued in Phasolurctos, and its comection acroses to the protocone is more cingulumlike, is longer and fades out at the lingual base of the protocone. These features are eren more subtued in Psembeheirus and S'choinobates. Both Litolonden and Pherscolarntos have a short stylar structure at the anterolingual base of the protocone. It, howarer, is more crescentic and forms a deeper pecket in the fossil. In

FIG. 9
 Appoximately wo-thirds natural size.

Phusoluretos this feature diminishes progressively from N^{1} to NL^{4}. It is not present in Psendocheirus on Schoinobates, and is apparently absent in Perikoala.

Paratype of Perikoala palankarinnica: The paratype of Perikoala palankarimica from the Ftadmua Formation is a right maxillary fragment (UCMP 45343) with a partial alveolus of p3, roots of N^{2}, M2 with the conwe partly preserved and an alveolus of A" (figs. 9, 10).

FIG: 11

Noarly all of the hoty of 10 is present, only the lingalal (al) is absent from the paracome and the postrondingual lace of the matacone. The mohsitructen lahial surface of the metacone and the absence of the metaconule agree with the M" of Plossolurctos. Althongh most of the lingual hase of the paraconc is missing, there is mos sugestion on the remaining burtion that an anterolingal styan cusp was present.

 surfates of the hyporane ame protocome, and is smonth on the labial surface of the metacome: but on the labsal serfares of the protocone

 of the konla and is thas difforent to the romdition in Litokeela.
 from the poroloph in the fingual side of the longitadinal valley. In

 Hhe protocone and patoloph. Fach of those riblgelets terminalles athengtly at the axis ol the longibulimal valley in a small, raised comme. A fine commeeting the aphess of those terminal eombes passes pasteriony lanon the pootuloph in a similar orientation and position

 P. cillerens at hand, tha comtignation seon in Prohkola is present;

 Has, and maty also indsoate that the fonction is as important as the
 in sontrast to the comdition in the other animats dous wot neecessarily

 diflors from Libuloula in which the tramsurase diameter acones the perpertive parts of the: tooth is essonlislly the same. 'This may be the to the fact that the Kintanman tooth is M^{1} 。 M^{1} in /'luscolerotos is morr nearly equidimensional transversely adose tha anforior and postarion halves than II^{2}.

Th Periloula and Phasoblarotos, a metacombe is not present as a distine (ousp, the enamel bemg hishly erombate in that ares. On the whor hame, the presence of a distimet metanomble in bitokoma is in

 posterobibially to med the anterobbial rexest of the hypocone. 'This is mone t!pieal of H^{2} than IL^{1} af Phascolardas in which the pesterion

Faceph lon its smallen size those parts of the tooth wheh wam be

 may have had some pre-Napakalationnom ancentor.

 maxilatry above Al ame its posterion fare is romeare postoriorly, In lateral viowe the labial edge of the anterion lace is thereted anterodomsally, met vertically as in Ihascoletelos. 'The root of the zygoma is essmatially symmotrial in lateral view in that the imterion and

 While the posterion surfare sopes anteroventrally. Thos, a sagittal sontion thoumh the reot wembl be asymmetrieal with the apex of the

 toedially and tapers laterally and posterodorsally alones the lateral

 fater possersers a sorong antombal fossa below tho infraomital foramen.

As mompared to that of Pheseotaretos. the anterion root of the
 forscly, has lue ventral boss, is more symmetrical in lloe sagital plame. alparonty lacks a concere mombtal lossa bolow the infrabohital farmmen, and the anterion fine shopes anterodorsally in bateral viow bather than heing vertiest. All of theme characters point to the more promitive nature of P'reikothe and may be redated functionally to tho masseler being less well developed in Perikola as eompared with I'laserolaretos.

Remalis, : An disenssed by Sticton (1957), the lonver desutition of f'rikonla is more primitive than Phascolarotos, and a similar state-

above. It sems clear, howerer, that I'crikoula and Phasmaretos are more elosely allied than eithor is to Litokodn. The latter apparently represents a persistently primitive side brambly which diverged, at some point in the emb Tertiary, from the lineage leading towat Phasolarctos. On the other hand the hasie similarity of Phascolaretos, frevikonla and the Kutjanarpm form shows that these anmals represent a major phylotic lomeh, possibly within the Phalangeroidea excholing Paculocheirms and Schoimobutes. At the present time, the most reasonable taxomomir assigmont of the latter two gemera seems to be with the Ploalangerintare.

	phascolurstos embereus				Limokoula	Perikoaln
	l'0ME	HCNE	UCMP	[' ${ }^{\text {M M }}$ '	S入M	$1{ }^{\circ} \mathrm{CMP}$
	Thitu	5x, 0^{101}	5sseo	-	1-1894\%	+5.3.3
Fin!	8.1	7.5	7.9	7.8	0.7	
L.M1	S.ii	7.4	7.5	7.9		
RM\%	7.8	7.	$\therefore .0$	7.6		5.9 ${ }^{\text {te }}$
L.M2	7.8	7.8	7.8	7.9		
Winthis						
RMI	8.2	7.8	7.7	7.8	5.i	
L, 11	E. 1	-. 8	7.7	7.8		
RAI:	4. 4	7.9	7.9	7.7		5.9 *
1, M2	4.4	7.8	8.0	7.9		
		* App	dimite.			

Vombatidae
Rhizophascolonus ${ }^{17}$ Stirton, Tedford and Woodburne, n. gen. (F゙ig. 11)
Genotypie species: Rhizomhascolonus eromerofti Stirton, Tedford and Woodburne, n. sp.

Generie diugmosis: $1^{\text {na }}$: litobed; anterior lobe round, enamel on liugual and labial sthes; posterior bobe 3.8 wider transverely than long anteroposterionly; enamel on romded lingual side, absent on labial side from alge of enamel posteriarly ocelusal outline coures oblignely antprolabially them around into labial inflection; shallow opposing lingral and labial inflections: height of enamel about 16.1 above root on lingual side, on anterolabial sidn 4.8 ; one small labial and two well developed lingual roots.

Rhizophascolonus crowerofti ${ }^{12}$ Stirton, Tedford and Woodburne, n. sp. Holotype: South Australian Mnsemm P13846, moderately worn left P".

[^7]Specific diagnosis: That of gemus until other species are described.
Type locality: UCMP Loc. V6213, 1,835 feet north of V5858, east shore of Lake Ngapakaldi, South Australia.

Horizon: Wipajiri Formation; pebble conglomerate, unit 3 of measured section 5 (Appendix).

Age: Kutjanarpu fauna, middle Tertiary; probably Miocene.
Description: This lamily is represented by a left upper P^{3} that is clearly referable to a new genus. It differs markedly from the living and Pleistocene wombats in haviug one small labial and two well developed lingual roots, and in the height of the crown.

The crown is bilobed as emphasized by shallow labial and lingual inflections. The anterior lobe is essentially romd; its transverse width is 7.5 . The transverse dimension of the posterior lobe is 10.6 , whereas anteroposterionly it measures 6.8. Although the inmer half of the posterior lobe is uniformly rounded, from near the posterior midline the outline curves obliquely anterolabially then around into the labial inflection. This part of the occlusal outline is accentuated by the absence of enamel on the side of the tooth in that area. Otherwise a 1.0 layer of enamel starting at the labial inflection extends around the anterior lobe into the lingual inflection where it is very thin, then continues around the lingual side of the posterior lobe to terminate on the posterior surface.
a

b

FIG. 11
Rhizophaseolonus croucrofti, n. gen. a. sp. a ocelusal view, b posterior view, e lingual view of holotype, LP3. SAM P13846. Natural size.

One of the most interesting features is a small, liplike, remnant of enamel that folds back from the anterior edge over a small part of the otherwise extensive exposure of dentine. The remaining enamel is slightly grooved at the midline with higher points on each side.

This hit of enamel therefore is surgestive of an mamel covering of the oerlusal surface at and near this level. If so, the height of erown of tha torth in a young anmal was little if any higher than in the tosetlo at hand.

The footh is emred labially and has the sereatest exposure of ramel on the lingual surface. Below the anterion root on the lingual side the enamel measures 11.8 , and below the posterior ront it is 16.1 , whereas on the labial side of the anterion lobe the enamel height is 4.3 .

The lingual inflection widens from abont 0.8 at the edge of the occlusal smpace to 4.0 at the base of the anamel. This inflection is largely filled with erment wheth eoaleseses with the dentine ol the roots donsally: 'The roots are partly abaded bot their tapering outlins indicato that the lomest one was not more than 7.0 in lengeth.

Ramarlis: 'The distribution of the ramel and dentine in the occlusal pattem, the labial emrvature and the apparent incipient hypsodont! of its P^{3} indicate that Rhizonhuscolomms is a wombat.

The bitohed outline and the size of the premmar seems to reveral that Rhizophetscolonus is more chasely related to Plascolomus than to Ramsayia, Lasiomimas or Vonbatas. The lobes of P^{33} in Phascotomus. are of different shape than in Rhizophascolonns: there is no enamel on the lathal side of the anterior lobe, and the tooth is extremely hypsodent and rootless. Ramsayia and Lasiorhinus differ from the other wombats in haviug P^{3} with a triangular oeclnaal outline and in lacking either a lahial or lingual inffection, lont as in Phasoolomus. enamel is ahsent on the labial side of the anterior lobe. In Pombatus the orelusal outline is neanty trianglar hut there is an anterolingnal groove and the enamul sucireles the tooth.

If Rhizophuscolomus is ancestral to Phaseolonus, the rate of evolution in hypsodmaty is much like that which occurred in the development of the Pleistocene beaver Custorohtes from Monasamlax, which lived during the Niocene, even though the increase in tooth size in the baver lineage is much greater than in the wombats.

Eridence from the P^{3} of Rhizophusolonns seems to indicate that the Phascolomus linenge extended well back into the Miocene if onr coredations are reasmably correct. Therefore, the emmon ancestor for all of the known genera of wombats may have lived well back in the oligocene.

A

B

FJG. 12
A. View from lako of UCMP loe. V-621:, type locality of Kutiamarpu fatam ant Wipajiri Fomman. Quary is at dage of lake; tractor is staming on dume deposits.
B. Closer view of Wipajiri Formation at V.62] showing conse ark basal bastie
 configuration. Show is approximately horizontal. White fin. ruler shows soble.

ENVLRON.MENT

As indicated in the lamal list the Kutjamarpu is one of the most diverse Tertiary voternate famas yet moovered in Austratia. The large momber of forest dwelling types indicates that the stream in which the Wipajia Formation was deposited passed through a wooded anca. This is consistent with the setting implied by the abundant impressions of Eucalyptus leaves fomm in the apper portion of the lormation. The riparian situation represented by the Wipajiri Formation and its contained fossils indicates the former presence of climates which were more hospitable than those which now obtain in this part of Australia.

A(BF OF THE KUT.JAMARPU FAUNA

The pramelids, phascolaretids and macropodifls have their elosest aftinties with forms in the Ngapakaldi fanna. The wombat is more primitive than ant known l'leistocene or Recent member of the fiamily. The ancestral position of Neohelos tirerensis to Kolopsis torms from the late Nioceme Alenota fama of the Northern Teritory (Stirtom. Woodhume, and Plane, 1967), strongly points to a lliocente age for the Kutjamanm fiama. On the present evidence, the best estimate of the age of the Findiamarpm famma is post-Ngapakaldi and preAleonta, mondoly doser to that of the Nempakatily fimma. The Wigatiri Formation was thas deposited alter the Etardoma Eormation and betore the Nampheordu Sands. The Wipajiri is the seeomd ohbest formation in the five-fold stratigraphie snecession of Tertiary rocks In the Tirari Tosert and, as ampared with the age assiguments given for the other famas in the area, is probably Mincene in are.

APPHNDLA A

Ma:anlual surotion 1

Measured Section 3
 quary (Vis13) of Kutjamorpu fauna. Se fig. 4.

STIRTON, TELFORD, ANL WOODBURNE-TIRARI DESERT TERTIARY FAUNA

4

5

6 (Fanstones light gray; base wot lefthed.

Claystome. Blun, with sattored large groen clay-
 sized groorr and browar platestome elasts. Conbatis impressions of muinsid promepots and sertehrato romatias.

Conglomernten pobble to houlder sized clasts, tin, mainly rommed green satalstone, claysione and subrommed rad firroginoms sumblone fragmonts in ft limonite confed sand matrix. More angular light to dank grey elanstone elasts. Arrived from underlying Etalmona formation. Suaterod rounded duricrust elasts and amguar fragmente of chort. Comspicuous larme turbla fragnouts usuatly stamding on alge. Contains fish, reptili and mammal remaims.

HJBLIOGRAPII

 $22 \mathrm{a}-3 \overline{6}, 12 \mathrm{dim}$

Hohns, R. K. aud ladbrook, N. 11., 1963: Invastigution of Lake Eyre Geol. Surv. S. Anstralia, report of invert. Ho. 品: 1-10t, 17 figs.
Brattorson, B., 190 fi: Wirly Cretacous mammals and the evolution of mammalian molat terth. focldiant: (fool., 13, 1: 1-105, 17 figs .
 -48 figx.
 of flu Libish Musimm, Lomdon. Initish Musnum (Nat. Hist.), $x+215$ pp., $1 \because \mu^{\prime} \mathrm{l}$.
 371, 62 figs: : 32 pls.
 Navit. no. 390): 1-15, Etigs.
 ix, $: 3:-47.268,11$ figs.
 121-134, 6 figs.
 lice. S. Anst. Mns.. xiti, 1: 71-81, é tigs.
 Bur. Min. Retsonras me. 85.
 lbil.
 Tirari Desort, South Austmalia (Abstrart). Geol. Sor. Amor. Siper. Pap. no. 82: $\because 51 \because 8$.
Stirton, R. A., Wimettmme, M. O.. ind Plame, M. D., 1967. A phylogeny of the Tertiary Diprotorlontidu and its significanco in rarmation. Bill. Bur. Min. Resourefg 110.82.

Hr. R. A. Stirton died suddenly on June 14th, 1966 while this paper was in press. This great loss is keenly felt for "Stirt" was a person of rare ability, enthusiasm and generosity and an inspiration to all who knew him. The inquiry into the history of the Australian mammals had been one of his major interests for over a decade and it is largely through his stimulus that much of the present knowledge concerning the Tertiary vertebrates of that continent has been brought to light. Our association with Dr. Stirton on these and other studies has been a thoroughly enjoyable and rewarding experienee and it is our intention to carry on, as far as possible under the circumstances, the Australian projects he initiated.
R. H. Tedford and M. O. Woombtrne.

[^0]:

[^1]:

[^2]: loriselir．
 （tontr＂！．
 is，Dn thre whole，fince grisimert，elemuer． butlor sumbert．

[^3]:

[^4]:

 pantrion lowar root lager that antertor.

[^5]: \& aros and Koalo, to cmphasizo the relatively simple ocelusal pattern of the holotype in comparison with Pribinala and Phasmolarolos,

[^6]:

[^7]:

